

FPGA Verification using System Verilog and UVM

Ottobre 2019

Verification vs Design Resource

Trend of Engineering headcount

- Mean peak number of engineers
- Compounded Annual Growth Rate

Figure 4. Mean Peak Number of Design and Verification Engineers working on a project

Verification Language Adoption Trend

0%

VHDL

Verilog

Source: Wilson Research Group and Mentor, A Siemens Business, 2018 Functional Verification Study

Vera

80% 2012 2014 70% 2016 2018 60% Next Year 50% Design Projects 40% 30% 20% 10% 0% VHDL Verilog SystemC SystemVerilog C/C++ OTHER Design FPGA Design Language Adoption * Multiple answers possible Source: Wilson Research Group and Mentor, A Siemens Business, 2018 Functional Verification Study © Mentor Graphics Corporation Mentor

FPGA: Verification Language Adoption

Decrease Low Level LanguageVerilog

VHDL

Increase High Level Language

System Verilog

System C

ASIC Verification Language Adoption

SystemVerilog

Specman e

C Mentor Graphics Corporation

C/C++

OTHER Testhench

** Multiple answers possible

Menlor

Verification Methodology Adoption Trend

ASIC: Methodologies and Testbench Base-Class Libraries

Unique main Actor: UVM Universal Verification Methodology

FPGA: Methodologies and Testbench Base-Class Libraries

Old Methodology story

System Verilog

High Level Language, new constructs, task and function which allow to development complex testbench with less and more coincise code.

3 Main Verification Components Advantages

1) Stimulus Generation:

New constructs Randomization more efficient New High level approach: OOP Approach

2) Functional Coverage

New constructs for collect Functional Coverage

3) Response checking

New constructs make Assertion more efficient

Universal Verification Methodology

This Methodology take out the advantages of System Verilog by standardizing the test bench structure throught a base classes library with defaults usefull methods.

1) Reduces test bench development time

2) Makes porting and reuse in different project very simple

UVM Advantages:

- High modularity and reausability
 - by using a base classes library
 - hierarchy testbench structure of modular components with their own function.
 - UVM phasing
- Efficient stimuli generation
 - by using transaction level modelling
 - by separating tests from testbench
- Chance to use DPI & VIP

SKYTECHNOLOGY RECENT VERIFICATION PROJECTS

• UVM Test Bench

Design: FPGA Stratix V Video acquisition and processing system Work: Development of entire UVM test bench

- build of the environment
- development of several Video protocol Agent
- use of QVIP Menthor Graphics

System Verilog Test Bench

Design: FPGA Zynq Ultrascale Interrogator submodule system Work: Development of Testbench for Interfaces A429, MIL1553

- Development of driver and generator classes for Random stimulus and error injection
- Development of monitor and scoreboard classes for self check

UVM Test Bench

System Verilog Test Bench

Skytechnology Functional verification services

- Define the verification strategy
- Develop a complete verification specification, test plan, and cover plan
- Put in place a fully-scripted verification environment
- Develop a high-level, self-checking, simulation test bench with functional coverage
- Create a comprehensive test case suite to achieve full functional and code coverage
- Reach coverage goal faster using constrained random verification
- Set up and run gate-level simulations
- We can take into account special requirement e.g. DO254, ISO26262